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Abstract. We compare the linear meson model and chiral perturbation theory in next to leading order in
the quark mass expansion. In particular, we compute the couplings L4–L8 of chiral perturbation theory as
functions of the parameters of the linear model. They are induced by the exchange of 0++ scalar mesons.
We use a phenomenological analysis of the effective vertices of the linear model in terms of pseudoscalar
meson masses and decay constants. Our results for the Li agree with previous phenomenological estimates.

1 Introduction

Spontaneously broken chiral symmetry is a basic ingre-
dient for the description of light mesons in the context
of QCD. It is based on the observation that in the limit
of vanishing light quark masses, mu, md, ms → 0, the
QCD Lagrangian exhibits a chiral SUL(3) × SUR(3) fla-
vor invariance. Since in this limit the light meson spec-
trum only shows an explicit vector–like SUV (3) symmetry
the full chiral flavor invariance must be broken sponta-
neously by a “chiral condensate”. For small quark masses
mq (q = u, d, s here) one expects the existence of some
sort of systematic expansion1 in powers of mq. To a given
order in mq the spontaneously broken chiral symmetry
only allows for a finite number of effective couplings enter-
ing the description of the pseudoscalar octet (π, K, η). To
lowest order these are the pion decay constant F0 and the
proportionality constant B0 between the squared meson
masses and the quark masses, e.g., M2

π± = B0(mu + md).
With increasing order in mq the number of independent
chiral invariants and therefore of free parameters grows
rapidly. Nevertheless, useful information can be extracted
from the low orders of the quark mass expansion if mq is
sufficiently small.

There are different ways of realizing the symmetry
content of QCD within low energy models for the light
mesons. The minimal model is the nonlinear sigma model
for the pseudoscalar octet which is described by a spe-
cial unitary 3 × 3 matrix Ũ , Ũ†Ũ = 1, det Ũ = 1 [1,2].
It can be extended to include the η′ meson explicitly if
the constraint det Ũ = 1 is dropped. In the linear sigma
model [3] the low lying scalar and pseudoscalar mesons are
grouped into a field Φ transforming in the (3,3) represen-

? Supported by the Deutsche Forschungsgemeinschaft
1 Not all quantities are analytic in mq, though. For instance,

the pion mass is proportional to (mu + md)1/2. Further non–
analyticities in higher couplings are induced by quantum fluc-
tuations of massless Goldstone bosons for mq → 0

tation of the chiral group [4,5]. Here the additional 0++

octet describes the scalar mesons (a0, K
∗
0 , f0) and the 0++

singlet corresponds to the “σ–resonance”. Further exten-
sions of mesonic models also include fields for the lightest
vector and pseudovector mesons (see, e.g., [6,5] and refer-
ences therein). A projection of these models onto the pseu-
doscalar octet states can be computed by first integrating
the mesonic quantum fluctuations and subsequently ac-
counting for the exchange of the η′, the scalar, vector and
pseudovector mesons (depending on the model) by solv-
ing their field equations. Technically, all masses and ver-
tices are contained in the effective action2 for the mesons
which is the generating functional for the 1PI Green func-
tions. All quantum fluctuations are already included in the
effective action. (Of course, the concept of one–particle–
irreducibility depends on the particle content of the model.
For example, a four pion interaction mediated by the ex-
change of a ρ–meson becomes 1PI in the pure nonlinear
or linear sigma model.) As far as only the pseudoscalar
octet (or nonet) is concerned a common language for the
different mesonic models can be found by computing the
effective action restricted to the corresponding fields. For-
mally, the latter can be obtained from the effective action
of the linear model by solving the field equations for the
scalar fields as functions of the pseudoscalar fields and in-
serting the result into the effective action. (A similar pro-
cedure can be applied to models which contain fields for
the vector and axial–vector mesons.) We emphasize that
the symmetry content of all these mesonic models is the
same as far as the pseudoscalar octet is concerned. All re-
lations that follow from spontaneously broken chiral sym-
metry if the masses and interactions of the pseudoscalars
are computed to a given order in mq are identical. This

2 Often the terms “effective model” or “effective action” are
also used to describe the result of a reduction of degrees of
freedom. In this case we will rather employ here the term “low
energy model” and reserve the term “effective action” for the
generating functional of 1PI Green functions
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also holds if the quark mass expansion is connected to a
simultaneous expansion in powers of derivatives for the
pseudoscalar fields as usually done in chiral perturbation
theory. The quark mass expansion is, however, not unique.
Instead of truncating the computation of physical quanti-
ties at a given order in mq one may alternatively choose to
include in the effective action only those invariants which
contribute to a given order in mq. If no further trunca-
tions are performed the physical observables calculated
from these invariants contain contributions which are for-
mally of higher order in mq. This procedure has been fol-
lowed in [5] for the linear meson model. It amounts to a
partial resummation of the quark mass expansion for phys-
ical quantities. The results obtained from the linear and
the nonlinear model may therefore differ by higher order
quark mass effects. Beyond pure symmetry relations the
different models typically contain additional assumptions
which may lead to further predictive power for mesonic
observables.

Chiral perturbation theory describes the “Goldstone
degrees of freedom” by a nonlinear sigma model. It is
valid for momenta sufficiently below the ρ–meson and σ–
resonance masses. There the parameters F0, B0 as well
as the couplings Li which appear at next to leading or-
der in the quark mass expansion are specified at some
normalization scale µ. The propagators and vertices of
the effective action or the physical observables are then
computed using a loop expansion which accounts for the
fluctuations of the pseudoscalar mesons. This expansion
apparently converges if the momenta and µ are not too
large [2]. The most important implicit assumption is sim-
ply that higher orders in the quark mass expansion can be
neglected. Since this is the minimal model pure symmetry
relations are most easily visualized in this context.

Within the linear meson model one may assume that
a description in terms of the field Φ and quark degrees of
freedom holds up to a “compositeness scale” kΦ around
(600 − 700) MeV. (In addition, one may use explicit vec-
tor fields.) If, furthermore, one assumes that the Yukawa
coupling between Φ and the quarks is sufficiently strong
at the scale kΦ this model turns out to be very predictive
for the effective mesonic action. This is a consequence of
a fast evolution towards partial infrared fixed points of
its running couplings [7]. We will follow here a more mod-
est “phenomenological” approach [5] and concentrate only
on properties of the effective action for the linear meson
model. The main assumption made here are the ones of
reference [5]:

(i) Terms with more than two derivatives can be neglected
in the effective action if the latter is expanded in pow-
ers of differences of momenta from an appropriately
chosen average momentum of the corresponding SUV

(3) multiplet, like q2
0 = −(2M2

K± + M2
π±)/3 for the

pseudoscalar octet. This assumption should hold with
the exception of contributions from the (tree–)exchange
of vector or axial–vector fields. It is substantiated by
the apparent smallness of the momentum dependence
of effective couplings which is induced by meson loops
[5]. Furthermore, we neglect (as in [5]) certain higher

order invariants with two derivatives involving high
powers of the chiral condensate σ0.

(ii) The explicit flavor symmetry breaking by current
quark masses appears in the linear meson model only
in form of a linear source term

Lj = −1
2

Tr
(
Φ† + †Φ

)
(1.1)

 = † = aqMq ≡ aq


mu 0 0

0 md 0
0 0 ms


 . (1.2)

This is motivated by the way how mesons arise as
quark–antiquark composite states at the scale kΦ [8,
9]. Deviations from this assumption arise from current
quark mass dependencies of quark loop contributions
to the effective four–quark vertex at the compositeness
scale. Since typical momenta are larger or of the order
of kΦ these effects are small.

(iii) Invariants in the effective action which contribute
only beyond quadratic order in the quark mass expan-
sion can be neglected in the phenomenological analy-
sis. We emphasize here that the quark mass expansion
apparently converges faster in the linear than in the
nonlinear model [5]. This is related to effective resum-
mations which are particularly important in the case
of large mixing of states.

It is important to note that our assumptions do not re-
strict the effective action of the linear meson model to
renormalizable interactions. The appearance of “non–re-
normalizable interactions”, i.e. couplings with negative
mass dimension, is, of course, not only possible but even
necessary for the generating functional of 1PI Green func-
tions of the linear meson model. It is, however, not clear a
priori how large the corresponding couplings are in units
of the chiral condensate σ0. It was found in [5,10] that
such non–renormalizable interactions play a crucial role
for the compatibility of this model with phenomenology.
They can be explained to a large extent by mixing with
or exchange of higher mass states.

The purpose of this work is a comparison of the effec-
tive action of chiral perturbation theory within the frame-
work of the nonlinear sigma model on one side with that
of the linear meson model on the other side. Naturally,
such a comparison must be restricted to the pseudoscalar
fields as the only degrees of freedom present in the nonlin-
ear model. Both models have free parameters which can
be fixed by using experimental input. As far as the same
quantities are used as input — the meson masses Mπ± ,
MK± and Mη as well as the decay constants fπ and fK

— and only symmetry relations are employed there is, of
course, no difference between the models. In the linear
model we also use Mη′ and the decay constants fη and
fη′ as obtained from the decays η → 2γ, η′ → 2γ (re-
lated to singlet–octet mixing) for a determination3 of the

3 Actually, only two of the three observables fη, fη′ and Mη

are needed as input whereas the third one comes out as a rather
successful “prediction” of the linear model [5]
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parameters [5] relevant for the present work. From this in-
formation we determine the couplings Li which appear in
next to leading order of chiral perturbation theory. More
precisely, we will compute within the linear model effec-
tive couplings L̃i which multiply proper vertices with the
same structure as those appearing as interactions in next
to leading order in chiral perturbation theory. In the linear
model the effective derivative terms are evaluated for mo-
menta corresponding to the location of the pole for an av-
erage pseudoscalar octet mass4 q2

0 = −(2M2
K± + M2

π±)/3.
For a full comparison one should evaluate in chiral pertur-
bation theory the same effective vertices. For simplicity we
will identify here the L̃i with the couplings Li(µ) of chiral
perturbation theory, evaluated at a renormalization scale
µ2 = −q2

0 . This minimizes the logarithms in the loop ex-
pansion of chiral perturbation theory. Nevertheless, for a
quantitatively precise comparison the same 1PI vertices
would have to be computed in the framework of chiral
perturbation theory.

Recent estimates of the current quark masses in both
the nonlinear [11] and the linear [10] sigma model show
very good agreement. The estimate of the higher order
couplings Li presented here confirms this general picture.
Within errors, the results of the linear model are compati-
ble with the estimates from chiral perturbation theory. For
µ = 400 MeV the couplings L̃5 and L̃8 of the linear meson
model turn out to be somewhat smaller than the central
values of the couplings L5(µ) and L8(µ), respectively, in
chiral perturbation theory. This may partly be due to the
uncertainties in the optimal value for µ or the loop effects
which are neglected in our comparison. On the other hand,
it was observed earlier [2,5] that the quark mass expan-
sion converges relatively slowly for the nonlinear model.
It seems therefore also conceivable that the observed dif-
ferences reflect higher order quark mass corrections which
are neglected in next to leading order chiral perturbation
theory but are included in our analysis of the linear model.

In the linear sigma model the scalar and pseudoscalar
meson fields are represented by a complex 3 × 3 matrix
Φ. The effective potential can be constructed from the
invariants

ρ = TrΦ†Φ , ξ = detΦ + det Φ†

τ2 =
3
2

Tr
(

Φ†Φ − 1
3
ρ

)2

, τ3 = Tr
(

Φ†Φ − 1
3
ρ

)2

.
(1.3)

We use a polynomial expansion around their values for the
expectation value of Φ in presence of equal light current
quark masses,

〈Φ〉 = σ01 . (1.4)

With ρ0 = 3σ2
0 and ξ0 = 2σ3

0 it is parameterized by

V = m2
g (ρ − ρ0) − 1

2
ν [ξ − ξ0 − σ0(ρ − ρ0)]

+
1
2
λ1 (ρ − ρ0)

2 +
1
2
λ2τ2 +

1
2
λ3τ3

4 Throughout this article we work in Euclidean space–time.
This is most convenient for comparison of our results with those
of an exact renormalization group approach [7]–[9]

+
1
2
β1 (ρ − ρ0) (ξ − ξ0)

+
1
2
β2 (ρ − ρ0) τ2 +

1
2
β3 (ξ − ξ0) τ2 +

1
2
β4 (ξ − ξ0)

2

+ . . . . (1.5)

The mass term m2
g vanishes for zero quark masses

m2
g =

1
6σ0

Tr  . (1.6)

Beyond the minimal kinetic term ∼ ZΦ Tr ∂µΦ†∂µΦ the ef-
fective action contains more complicated terms involving
two derivatives of Φ multiplied by couplings X−

Φ , UΦ, ṼΦ,
etc. [5]. They play an important role for the phenomeno-
logical analysis and will be specified in detail in the next
section. As a consequence, the wave function renormal-
ization constants for the different SUV (3) multiplets con-
tained in Φ are different, as for instance Zm and Zp for
the pseudoscalar octet and singlet, respectively,

Zm = ZΦ + X−
Φ σ2

0 + UΦσ0

Zp = ZΦ + X−
Φ σ2

0 + 6ṼΦσ4
0 − 2UΦσ0 .

(1.7)

Because of the axial anomaly reflected by the couplings
ν, β1, β3 and β4 the pseudoscalar singlet acquires a mass
term even for vanishing current quark masses

m2
p =

(
3
2
ν σ0 + m2

g

)
Z−1

p . (1.8)

For a phenomenological determination of the couplings
ν, λ2, etc. (or the related renormalized parameters σ0 =
Z

−1/2
m σ0, ν = Z

−3/2
m (ν + . . .), λ2 = Z−2

m λ2 + . . .) we refer
the reader to [5]. We only recall here that ν is essentially
determined from the η′–mass, σ0 and λ2 are related to fπ

and fK − fπ whereas the non–minimal kinetic couplings
are fixed by the decays η → 2γ and η′ → 2γ. Information
from the scalar sector is not needed for a determination of
these parameters. It will turn out that the couplings L̃5
and L̃8 are generated by the exchange of 0++ octet fields
and one therefore expects that the average scalar octet
mass m2

h = (2M2
K∗

o
+ M2

ao
)/3 plays a decisive role. It will

turn out, however, that the combination Zh

Zm
m2

h which ap-
pears in these couplings (with Zh the wave function renor-
malization constant of the scalar octet) only involves pa-
rameters which can be determined from the pseudoscalar
sector alone (at least to the required order in the quark
mass expansion):

Zh

Zm
m2

h ' 2
3

Zp

Zm
M2

η′ + 3λ2σ
2
0 . (1.9)

The couplings L̃4 and L̃6 need, in addition, information
on the octet–singlet mass splitting in the scalar sector
which has not yet been determined phenomenologically.
The coupling L̃7 = −σ0/(18ν) is essentially fixed by fπ

and the η′ mass. Not much new information is obtained
for the higher derivative couplings L̃1, L̃2 and L̃3. They
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are dominated by corresponding higher derivative terms
in the linear model which are, in turn, mainly generated
by the exchange of vector mesons.

We finally want to mention an earlier analysis [12] of
the hypothesis that the couplings Li are dominated by
the exchange of scalar and vector mesons. Our findings
are in overall agreement with this work. Beyond [12] we
determine here the relevant couplings and wave function
renormalization for the scalar octet. This permits a rather
precise quantitative estimate of the low energy couplings
L̃4, L̃5, L̃6, L̃7 and L̃8 within our framework. Possible
effects of higher states and loops are already included in
the effective action for the linear meson model. Within the
above assumptions (i), (ii), (iii) there are no further cor-
rections to these couplings. The low energy constants Li

have also been estimated within extended Nambu–Jona-
Lasinio models [13].

2 Nonlinear versus linear sigma model

Our starting point is the polar decomposition of the gen-
eral complex 3×3 matrix Φ in terms of a hermitian matrix
S and a unitary matrix U

Φ = SU , S† = S , U†U = 1 . (2.1)

Here U contains the nine 0−+ pseudoscalars in a nonlinear
representation

U = exp
{

− i

3
ϑ

}
Ũ , det Ũ = 1, Ũ = exp

{
iλzΠz

f

}
(2.2)

with λz the Gell–Mann matrices in a normalization trλzλy

= 2δzy and f ≡ (2fK +fπ)/3 the average pseudoscalar de-
cay constant. In case of chiral symmetry breaking the ma-
trix U describes the nine Goldstone bosons which would
be massless in the absence of quark masses and the chi-
ral anomaly. It therefore transforms under UL(3) × UR(3)
chiral flavor transformations according to

U −→ URUU†
L . (2.3)

With respect to these transformations Φ belongs to a lin-
ear (3,3) representation and this determines the transfor-
mation properties of S = ΦU† as

Φ −→ URΦU†
L , S −→ URSU†

R . (2.4)

Thus S is neutral with respect to SUL(3) and the Abelian
axial UA(1) symmetry. It decomposes with respect to
SUR(3) into an octet (the traceless part) and a singlet
(∼ trS). The nine real degrees of freedom contained in S
describe in a nonlinear representation the nine 0++ scalar
fields contained in Φ. With respect to the discrete symme-
tries C and P the fields transform according to

P : Φ → Φ† , U → U† , S → U†SU

C : Φ → ΦT , U → UT , S → UT ST U∗ .
(2.5)

It is easy to visualize the group theoretical properties un-
derlying the ansatz (2.1) by observing that an arbitrary
complex matrix Φ can be brought into a diagonal and
real form Φ̂ = diag(Φ̂u, Φ̂d, Φ̂s) by suitable UL(3) × UR(3)
transformations Φ = ÛRΦ̂Û†

L. With U = ÛRÛ†
L we can

write Φ = ÛRΦ̂Û†
RU and associate S = ÛRΦ̂Û†

R = S†.
We finally observe that the decomposition (2.1) is not
unique. By a redefinition S → SV −1, U → V U the prop-
erties (2.1) remain unchanged if V is unitary and obeys
V SV = S. The possible solutions for V depend on S. For
instance, S = 1 requires V 2 = 1 whereas S = 0 is triv-
ially compatible with all V . For generic S there is only
a discrete number of solutions V . We conclude that for
given S we should define U only modulo V . We can use
this freedom to require that for Φ = Φ† one has U = 1. In
particular, in the presence of a real diagonal source for Φ
(corresponding to a real diagonal quark mass matrix) the
expectation value of Φ is also real and diagonal such that
〈Φ〉 = 〈S〉, 〈U〉 = 1.

We can now express the different pieces in the chirally
invariant effective Lagrangian for Φ in terms of U and
S. The four independent invariants (1.3) on which the
potential V , (1.5), depends are given by

ρ = TrS2, ξ = 2 detS cos ϑ,

τ2 =
3
2

Tr
(

S2 − 1
3

TrS2
)2

,

τ3 = Tr
(

S2 − 1
3

TrS2
)3

. (2.6)

The additional invariant ω = i(detΦ − det Φ†) is CP–odd
and may therefore only appear quadratically. Yet, ω2 can
be expressed in terms of the invariants (2.6). The potential
depends therefore on S and the pseudoscalar singlet field
described by ϑ.

For the simplest form of the effective kinetic term one
finds

Lkin(ZΦ) = ZΦ Tr
(
∂µΦ†∂µΦ

)
= ZΦ

{
Tr (∂µS∂µS) + Tr

(
S2∂µU∂µU†)

+ Tr
(
[S, ∂µS]U∂µU†)} (2.7)

whereas some non–minimal kinetic invariants introduced
in [5] read

Lkin(YΦ) =
1
4
YΦ∂µρ∂µρ

= YΦ Tr (S∂µS) Tr (S∂µS)

Lkin(VΦ) =
1
2
VΦ∂µξ∂µξ

= 2VΦ

{
cos2 ϑ∂µ det S∂µ detS

− 2 detS cos ϑ sinϑ∂µ det S∂µϑ
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+ (detS)2 sin2 ϑ∂µϑ∂µϑ

}

Lkin(ṼΦ) =
1
2
ṼΦ∂µω∂µω = 2ṼΦ

{
sin2 ϑ∂µ det S∂µ det S

+ 2 detS cos ϑ sinϑ∂µ det S∂µϑ

+ (detS)2 cos2 ϑ∂µϑ∂µϑ

}
(2.8)

Lkin(X±
Φ )

= −1
8
X±

Φ

{
Tr
(
Φ†∂µΦ ± ∂µΦ†Φ

) (
Φ†∂µΦ ± ∂µΦ†Φ

)
+ Tr

(
Φ∂µΦ† ± ∂µΦΦ†) (Φ∂µΦ† ± ∂µΦΦ†)}

= −1
4
X±

Φ

{
2 Tr

(
S∂µSS∂µS ± S2∂µS∂µS

)
+ Tr

{(
(2 ∓ 1) [S∂µSS, S] ∓ [S3, ∂µS]

)
∂µUU†}

− Tr
{
(2 ∓ 1)S2U∂µU†S2∂µUU†

∓S4∂µU∂µU†}}.

We also include an “anomalous” UA(1) violating kinetic
term involving ε–tensors

Lkin(UΦ) =
1
2
UΦεa1a2a3εb1b2b3

(
Φa1b1∂

µΦa2b2∂µΦa3b3

+Φ†
a1b1

∂µΦ†
a2b2

∂µΦ†
a3b3

)

= UΦ cos ϑ

{
TrS Tr ∂µS Tr ∂µS + 2 Tr (S∂µS∂µS)

− TrS Tr (∂µS∂µS) − 2 Tr ∂µS Tr (S∂µS)

+ Tr
(
∂µS

[
S2, ∂µUU†])

− TrS Tr
(
∂µS

[
S, ∂µUU†])

+ detS
(
Tr
(
∂µU∂µU†)− ∂µϑ∂µϑ

)}

− iUΦ sinϑ

{
2 TrS Tr ∂µS Tr

(
S∂µUU†)

− TrS Tr
(
∂µS

{
S, ∂µUU†})

− 2 Tr ∂µS Tr
(
S2∂µUU†)

− 2 Tr
(
∂µUU†S

)
Tr (S∂µS)

+ Tr
(
∂µS

(
S
{
S, ∂µUU†}+

{
S, ∂µUU†}S

))}
(2.9)

where we used the relation

εa1a2a3εb1b2b3Aa1b1Ba2b2Ca3b3 = (2.10)
TrA TrB TrC + Tr (A {B, C})
− TrA Tr (BC) − TrB Tr (AC) − TrC Tr (AB) .

In addition, there are terms involving four and more deri-
vatives of Φ.

The effective action of the nonlinear sigma model ob-
tains if we restrict the degrees of freedom of the linear
model to the pseudoscalars in the nonlinear realization U .
A straightforward approach inserts (2.1), (2.2) into the
potential V and the kinetic terms of the linear meson
model. Subsequently one expresses S as a functional of
U by means of the solution of its equation of motion. This
is, of course a rather difficult task. On the other hand, we
are only interested in the effective action for U or Ũ to low
orders in an expansion in powers of derivatives and Mq.
This reduces the complexity of this program considerably.

3 Lowest order chiral perturbation theory

We will start by considering first the lowest order of the
quark mass expansion of the effective action for the linear
meson model. This coincides with lowest order chiral per-
turbation theory. In this approximation Φ can be written
as

Φ = ϕ00U , i.e. S = ϕ001 . (3.1)

Here the positive real constant ϕ00 should be associated
with the expectation value of Φ in the limit of vanishing
quark masses. Only in this limit ϕ00 coincides with σ0 and
〈Φ〉 − ϕ00 = 0, whereas for mq 6= 0 there are corrections
involving the trace of the quark mass matrix.

The computation of the parameters of chiral pertur-
bation theory from those of the linear meson model pro-
ceeds in two steps: First one inserts (3.1) with (2.2) into
the kinetic terms (2.7)–(2.9), the potential (1.5) and the
source term (1.1) linear in the quark masses. Second, one
establishes the relation between ϕ00 and σ0. This yields
an effective action for Ũ and ϑ in the limit of small quark
masses. Within our approach the parameters in this effec-
tive action correspond to an expansion in momenta around
a typical momentum in the vicinity of the pole for the
pseudoscalar mesons, i.e. q2

0 = −(2M2
K± + M2

π±)/3.
Let us start with the kinetic terms which yield

L(0)
kin =

(
ZΦ + UΦϕ00 cos ϑ + X−

Φ ϕ2
00
)
ϕ2

00 Tr ∂µU†∂µU

+ ϕ3
00∂

µϑ∂µϑ
(
2ϕ3

00VΦ sin2 ϑ + 2ϕ3
00ṼΦ cos2 ϑ

−UΦ cos ϑ) . (3.2)

With the identities

Tr
(
Ũ†∂µŨ

)
= 0 , Tr

(
∂µUU†) = −i∂µϑ

Tr ∂µU†∂µU = Tr ∂µŨ†∂µŨ +
1
3
∂µϑ∂µϑ

(3.3)

we find the singlet kinetic term from (3.2) for

L(0)
kin(ϑ) =

1
3
ϕ2

00∂
µϑ∂µϑ

{
ZΦ + X−

Φ ϕ2
00 − 2UΦϕ00 cos ϑ

+ 6ϕ4
00

(
VΦ sin2 ϑ + ṼΦ cos2 ϑ

)}
. (3.4)
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We note that at ϑ = 0 the kinetic term is positive pro-
vided Z

(0)
p = ZΦ + X−

Φ ϕ2
00 − 2UΦϕ00 + 6ṼΦϕ4

00 > 0. We
recognize the wave function renormalization Zp, (1.7), up
to the difference between ϕ00 and σ0. Similarly, the com-
bination Z

(0)
m = ZΦ +UΦϕ00 +X−

Φ ϕ2
00 in front of the octet

kinetic term ∼ Tr ∂µŨ†∂µŨ in (3.2) is the lowest order
approximation of Zm. (1.7). Instead of ϑ we may use a
field p with standard normalization of the kinetic term

1
2
∂µp∂µp =

1
3
ϕ2

00Zp∂
µϑ∂µϑ . (3.5)

With (3.1) the effective potential V (1.5) is indepen-
dent of Ũ and contributes only a potential for ϑ

V (ϑ) = −1
2
[
ν + 3β1(σ

2
0 − ϕ2

00) + 2β4σ
3
0
]
ξ(ϑ) +

1
2
β4ξ(ϑ)2

ξ(ϑ) = 2ϕ3
00 cos ϑ . (3.6)

Expanding around the minimum at ϑ = 0 this induces a
mass term for the pseudoscalar singlet

1
2
M

2
ϑϑ2 =

1
2
ϕ3

00
[
ν + 3β1(σ

2
0 − ϕ2

00) + 2β4(σ
3
0 − 2ϕ3

00)
]
ϑ2

=
1
2
p2Z−1

p

[3
2
νϕ00 +

9
2
β1ϕ00(σ2

0 − ϕ2
00)

+3β4ϕ00(σ3
0 − 2ϕ3

00)
]

=
1
2
m(0)2

p p2 . (3.7)

Here m
(0)
p can be identified to lowest order with mp, (1.8)

or the mass of the η′ meson. For vanishing quark masses
we therefore have a massless octet of Goldstone bosons
Ũ and a massive pseudoscalar singlet p. The source term
(1.1)

L(0)
 = −1

2
ϕ00 Tr

(
†U + U†

)
= −1

2
aqϕ00 TrMq

(
U + U†) (3.8)

generates non–vanishing masses for the pseudoscalar octet.
It is now straightforward to identify the parameters of

the nonlinear sigma model to lowest order in the quark
mass expansion. We use here the notation of [2] adapted
to Euclidean space–time

L(0)
χPT =

F̃ 2
0

4

{
Tr
(
∂µU∂µU†)− 2B̃0 TrMq

(
U + U†)}

+
1
12

H̃0∂
µϑ∂µϑ . (3.9)

We find

F̃ 2
0 = 4ϕ2

00
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
)

B̃0 =
1
4

aq(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00

)
ϕ00

H̃0 = −12UΦϕ3
00 + 24ṼΦϕ6

00

(3.10)

and f in (2.2) is given to this order by

f = 2Z1/2
m ϕ00 . (3.11)

The constants F̃ 2
0 and H̃0 can be computed from the pa-

rameters of the linear meson model once the relation be-
tween ϕ00 and σ0 is established. To lowest order in the
quark mass expansion we can use ϕ00 = σ0 = Z

−1/2
m (2fK

+fπ)/6. For quantitative estimates in next to leading or-
der we also need to include the difference between ϕ00 and
σ0. The value of ϕ00 corresponds to the minimum of the
effective potential (1.5) without the source term. We only
need to evaluate V for diagonal fields Φ = σ0 + ∆σ

V (∆σ) = 6m2
gσ0∆σ

+
(

3m2
g − 3

2
ν σ0 + 18λ1σ

2
0 + 18β1σ

3
0 + 18β4σ

4
0

)
∆σ2

+
(−ν + 18λ1σ0 + 27β1σ

2
0 + 36β4σ

3
0
)
∆σ3

+
(

9
2
λ1 + 15β1σ0 + 30β4σ

2
0

)
∆σ4

+
(
3β1 + 12β4σ0

)
∆σ5 + 2β4∆σ6 . (3.12)

Including corrections to quadratic order in ∆σ this yields

ϕ00 = σ0 − σ0
m2

g

m2
s

(3.13)

+
1
2

m4
gσ

2
0

m6
s

(
ν − 18λ1σ0 − 27β1σ

2
0 − 36β4σ

3
0
)

where

m2
s = m2

g − 1
2
ν σ0 + 6λ1σ

2
0 + 6β1σ

3
0 + 6β4σ

4
0 (3.14)

equals the scalar singlet mass term m2
s up to a wave func-

tion renormalization constant (m2
s = m2

s/Zs). Inserting
(3.13) into (3.10) one can now extract the difference be-
tween F̃0 and f = (2fK + fπ)/3 to quadratic order in the
quark masses. The dominant contribution (neglecting cor-
rections ∼ UΦ and X−

Φ ) is F̃0/f ' ϕ00/σ0 ' 1 − m2
g/m2

s.
We remind the reader that according to our conventions
for the definition of ZΦ, X−

Φ , etc. the parameter F̃ 2
0 cor-

responds here to a normalization at q2
0 . The value of B̃0

is related to the proportionality constant5 aq in (1.2). It
sets the scale for the average current quark mass to lowest
order. An estimate of the current quark masses and B̃0 in
the linear meson model can be found in [10].

Finally, it is instructive to relate the fields of the non-
linear sigma model to the linear representations contained
in Φ:

Φ = σ0 +
1√
2

(
iφp +

i√
3
χp + φs +

1√
3
χs

)
. (3.15)

5 Note that only the combination aqMq is independent of
the renormalization scale used for the definition of the current
quark masses
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To lowest order one may use for 〈Φ〉 = ϕ00 the relations

χp = − i√
6
ϕ00 Tr

(
U − U†)

Φp = − i√
2
ϕ00

[
U − U† − 1

3
Tr
(
U − U†)]

χs =
1√
6
ϕ00

[
Tr
(
U + U†)− 6

]
Φs =

1√
2
ϕ00

[
U + U† − 1

3
Tr
(
U + U†)]

(3.16)

which implies for the kinetic terms

Tr ∂µΦp∂µΦp =
1
2
ϕ2

00

{
2 Tr ∂µU†∂µU − Tr ∂µU∂µU

− Tr ∂µU†∂µU† +
1
3
[
Tr(∂µU − ∂µU†)

]2}

∂µχp∂µχp = −1
6
ϕ2

00
[
Tr(∂µU − ∂µU†)

]2
Tr ∂µΦs∂µΦs =

1
2
ϕ2

00

{
2 Tr ∂µU†∂µU + Tr ∂µU∂µU

+ Tr ∂µU†∂µU† − 1
3
[
Tr(∂µU + ∂µU†)

]2}

∂µχs∂µχs =
1
6
ϕ2

00
(
Tr(∂µU + ∂µU†)

)2
. (3.17)

On the other hand, expanding U for small Πz and ϑ yields

ϕ00Ũ = ϕ00 +
i

2
Z

− 1
2

m λzΠz − 1
8
Z−1

m

(λzΠz)2

ϕ00
+ . . .

ϕ00U = ϕ00Ũ − i

3
ϕ00ϑ − 1

18
ϕ00ϑ

2

+
1
6
Z

− 1
2

m ϕ00ϑλzΠz + . . . . (3.18)

To linear order in Π and ϑ one can identify Π with m =
(2Zm)1/2φp

Π = λzΠz = (2Zm)
1
2 Φp = λzmz (3.19)

and ϑ is proportional to p = Z
1/2
p χp

ϑ = − 3√
6

χp

ϕ00
= − 3√

6
Z

− 1
2

p
p

ϕ00
. (3.20)

4 Next to leading order quark mass expansion

Going beyond the lowest order in chiral perturbation the-
ory requires a solution for S[U ] in the presence of “sources”
involving quark masses, non–vanishing ϑ and derivatives
of U . We will construct an iterative solution S[U ] treat-
ing the sources as small corrections. Inserting this solu-
tion into the action will produce a systematic expansion

of the effective action of the nonlinear sigma model. The
lowest order of this expansion is S = ϕ00 and has been
discussed in the previous section. Next one expands the
general solution for U 6= 1, namely, S = ϕ00 + S1 + . . . ≡
ϕ00 + H + T + . . ., with TrH = 0 and T = (TrS1)/3,
while keeping only terms linear in S1 and the sources. To
this order one needs the Lagrangian for H and T in the
approximation

L(H,T ) =
M

2
H

2
TrH2 − TrA(H)[U ]H

+
M

2
T

2
T 2 − A(T )[U ]T (4.1)

The mass terms M
2
H and M

2
T obtain from the second

derivatives of V at S = ϕ00 (to leading order we may set
ϕ00 = σ0 here):

M
2
H = 2m2

g + 2ν σ0 + 6λ2σ
2
0 (4.2)

M
2
T = 6m2

g − 3ν σ0 + 36λ1σ
2
0 + 36β1σ

3
0 + 36β4σ

4
0 = 6m2

s .

The source terms have three different contributions. The
first arises from the quark mass term

A(H)
 =

1
2
(
U† + U†)− 1

6
Tr
(
U† + U†)

A(T )
 =

1
2

Tr
(
U† + U†) .

(4.3)

The second contribution obtains from linearizing the ki-
netic term in H + T

A
(H)
kin = −2ϕ00

(
ZΦ + 2X−

Φ ϕ2
00
)

×
(

∂µU∂µU† − 1
3

Tr ∂µU∂µU†
)

−2iUΦϕ2
00

(
∂µ

[
sinϑU∂µU†]− i

3
∂µ [sinϑ∂µϑ]

)

A
(T )
kin = −ϕ00

{
2
(
ZΦ + 2X−

Φ ϕ2
00
)

+ 3UΦϕ00 cos ϑ
}

×Tr ∂µU∂µU†

−ϕ2
00

{
12ϕ3

00

(
VΦ cos2 ϑ + ṼΦ sin2 ϑ

)
+ UΦ cos ϑ

}
×∂µϑ∂µϑ

−4ϕ2
00

{
3ϕ3

00 sinϑ cos ϑ
(
VΦ − ṼΦ

)
+ UΦ sinϑ

}
×∂µ∂µϑ . (4.4)

Finally, the last term results from the ϑ–dependence of V
induced by the invariant ξ (with ϕ00 replaced by σ0 here)

A
(H)
ϑ = 0

A
(T )
ϑ = −3ν σ2

0 (1 − cos ϑ) .
(4.5)

We point out that we have neglected in (4.1) kinetic terms
for H and T as induced by Lkin. This is consistent with
our approximation since an expansion of the propagator
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(M
2

+ Zq2)−1 in powers of the momentum squared q2

produces higher derivatives.
The solution

H = M
−2
H A(H)[U ]

T = M
−2
T A(T )[U ]

(4.6)

has now to be reinserted into the effective action. This
yields the next to leading order corrections to the effective
Lagrangian of the nonlinear sigma model

L(1)
χPT = − 1

2M
2
H

Tr
(
A(H)

 + A
(H)
kin + A

(H)
ϑ

)2

− 1

2M
2
T

(
A(T )

 + A
(T )
kin + A

(T )
ϑ

)2
. (4.7)

We will write the terms which do not involve ϑ explicitly
(i.e. beyond the implicit ϑ–dependence of U , U†) in a no-
tation analogous to that of [2] (for Euclidean space–time)

L(1)
χPT = −L̂1

[
Tr
(
∂µU∂µU†)]2

− L̂2 Tr
(
∂µU∂νU†)Tr

(
∂µU∂νU†)

− L̂3 Tr
(
∂µU∂µU†)2

+ 2B0L̂4 Tr
(
∂µU∂µU†)TrMq

(
U† + U

)
+ 2B0L̂5 Tr

(
∂µU∂µU† [MqU

† + UMq

])
− 4B2

0L̂6
[
TrMq

(
U† + U

)]2
− 4B2

0L̂7
[
TrMq

(
U† − U

)]2
− 4B2

0L̂8 Tr
(
MqU

†MqU
† + MqUMqU

)
. (4.8)

The coefficients L̂i can be read off from (4.7) by setting
ϑ = 0. The next to leading order quark mass corrections
in the potential for U arise from the terms ∼ A2



L(1)
m = − 1

8M
2
H

(
Tr †U†U + TrU†U†

)

−1
8

(
1

M
2
T

− 1

3M
2
H

)[
Tr
(
†U + U†

)]2
.(4.9)

Comparing with (4.8) we infer the constants

L̂6 =
1
2
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
)2( ϕ2

00

M
2
T

− ϕ2
00

3M
2
H

)

L̂7 = 0 (4.10)

L̂8 =
1
2
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
)2 ϕ2

00

M
2
H

.

Quark mass corrections to the kinetic terms are induced
by AAkin and read

L(1)
kin,m =

(
ZΦ + 2X−

Φ ϕ2
00
) ϕ00

M
2
H

× Tr
[(

U† + U†) ∂µU∂µU†]
+

[(
ZΦ +

3
2
UΦϕ00 + 2X−

Φ ϕ2
00

)
ϕ00

M
2
T

− 1
3
(
ZΦ + 2X−

Φ ϕ2
00
) ϕ00

M
2
H

]

× Tr
(
U† + U†)Tr ∂µU∂µU† . (4.11)

From there we find the coefficients

L̂4 = 2
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
)

×
[(

ZΦ +
3
2
UΦϕ00 + 2X−

Φ ϕ2
00

)
ϕ2

00

M
2
T

− 1
3
(
ZΦ + 2X−

Φ ϕ2
00
) ϕ2

00

M
2
H

]
(4.12)

L̂5 = 2
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
) (

ZΦ + 2X−
Φ ϕ2

00
) ϕ2

00

M
2
H

.

Finally, we turn to the terms involving four derivatives
of U . In the linear sigma model they obtain also contribu-
tions from invariants involving four derivatives of Φ. For
instance, a term of the form

L = HΦ Tr
(
∂µΦ†∂µΦ

)2
(4.13)

yields
L(0)

kin,4 = HΦϕ4
00 Tr

(
∂µU†∂µU

)2
. (4.14)

Since we are considering a linear meson model without
explicit vector and axial–vector fields it is plausible that
the dominant part of HΦ and also L̂3 (as well as L̂1 and
L̂2) is generated by the exchange of vector mesons [12].
Additional contributions are produced by scalar exchange
∼ A2

kin:

L(1)
kin,4 = −2

(
ZΦ + 2X−

Φ ϕ2
00
)2 ϕ2

00

M
2
H

×
{

Tr
(
∂µU∂µU†)2 − 1

3
[
Tr
(
∂µU∂µU†)]2}

−2
(

ZΦ +
3
2
UΦϕ00 + 2X−

Φ ϕ2
00

)2

× ϕ2
00

M
2
T

[
Tr
(
∂µU∂µU†)]2 . (4.15)

leading to L̂i are

L̂
(H,T )
1 = 2

(
ZΦ +

3
2
UΦϕ00 + 2X−

Φ ϕ2
00

)2
ϕ2

00

M
2
T

− 2
3
(
ZΦ + 2X−

Φ ϕ2
00
)2 ϕ2

00

M
2
H

L̂
(H)
3 = 2

(
ZΦ + 2X−

Φ ϕ2
00
)2 ϕ2

00

M
2
H

. (4.16)
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Finally, one may also extract the interactions between
the pseudoscalar Goldstone bosons and the pseudoscalar
singlet ϑ to linear order in ϑ. Taking the singlet–octet
mixing into account they provide the vertices which are
needed for a computation of the decay widths for η′ →
ηππ and η′ → 3π0. Beyond those terms arising from the
implicit ϑ–dependence of L(0)

χPT +L(1)
χPT , (3.9), (4.8), there

are also explicit ϑ–dependencies appearing in (4.7). They
are given to linear order in ϑ by

L(1)
χPT,ϑ = −iUΦ

ϕ2
00

M
2
H

ϑ

{
Tr
[
∂µU∂µU† (U† − U†)]

− 4ϕ00
(
ZΦ + 2X−

Φ ϕ2
00
)

× Tr
[
∂µ

(
∂νU∂νU†)U∂µU†]} . (4.17)

5 Integrating out the η′ meson

If one is only interested in the effective interactions of the
pseudoscalar octet mesons one may integrate out also the
field ϑ which corresponds dominantly to the η′ particle.
The procedure parallels the one of the preceding section.
The mass term M

2
ϑ is given by (3.7), and the linear terms

involving Ũ , i.e. −A(ϑ)[Ũ ]ϑ give rise to effective contribu-
tions to the low energy constants for Ũ

∆L(1,ϑ)
χPT = − 1

2M
2
ϑ

(
A(ϑ)

 + A
(ϑ)
kin

)2
. (5.1)

For ϑ integrated out and U ≡ Ũ we denote the constants
appearing in the analog of (4.8) by L̃i. The difference be-
tween the L̃i and L̂i can be computed from (5.1) with

A(ϑ)
 =

i

6
ϕ00 Tr

(
Ũ† − †Ũ

)
A

(ϑ)
kin = 0 .

(5.2)

Here we have omitted terms resulting from L(1)
χPT +L(1)

χPT,ϑ

which do not contribute to the L̃i since they are of higher
order in the quark mass expansion. One therefore finds

∆L(1,ϑ)
χPT =

ϕ2
00

72M
2
ϑ

[
Tr
(
Ũ† − †Ũ

)]2
. (5.3)

The dominant contribution of this term is an effective ad-
ditional mass term for the η meson which is due to η–η′
mixing. Equation (5.3) yields

L̃7 = − 1
18
(
ZΦ + UΦϕ00 + X−

Φ ϕ2
00
)2 ϕ4

00

M
2
ϑ

. (5.4)

For the remaining L̃i there is no contribution from pseu-
doscalar singlet exchange such that L̃i = L̂i for i 6= 7.

6 Estimates of the low energy constants

Having established in the preceding sections the formal
correspondence between the parameters of the linear me-
son model and the effective couplings L̃i of the nonlinear
sigma model we may estimate the latter using the phe-
nomenological information about the linear meson model
as input. The experimental input for the linear meson
model considered in [5] concerns only several (pseudo–
)scalar meson masses and decay constants as well as the
η–η′ mixing angle. A comparison with the values of the low
energy constants Li of chiral perturbation theory (see for
instance [14]) therefore implicitly relates different experi-
mental observations. We remind the reader at this point
that our values for the low energy constants are effec-
tive values which result in chiral perturbation theory after
computing the loop corrections from pseudoscalar fluctu-
ations. We also note that some of these constants involve
as an important parameter the mass of the scalar singlet
(the σ particle) which was not determined by the analysis
of [5].

We will start by expressing the L̃i determined in the
preceding sections in terms of the parameters introduced
in [5]. We can use here the approximations ϕ00 = σ0 ≡
Z

−1/2
m σ0, ν = Z

−3/2
m ν which yields

M
2
H = 2Zhm2

h

M
2
T = 6Zsm

2
s

M
2
ϑ =

2
3

Zp

Zm
σ2

0m(0)2
p = νσ3

0

ZΦ + UΦϕ00 + X−
Φ ϕ2

00 = Zm (6.1)

ZΦ + 2X−
Φ ϕ2

00 = Zm

{
1 +

(
Zh

Zm

) 1
2

ωmσ0

}
≡ Zmβ

ZΦ +
3
2
UΦϕ00 + 2X−

Φ ϕ2
00 =

Zm

{
1 +

(
Zh

Zm

) 1
2

ωmσ0 +
1
2

(
1 − Zp

Zm

)}
≡ Zmα .

Here ms denotes the mass of the sigma resonance and mh

is the average mass of the scalar octet with Zs and Zh de-
noting the corresponding wave function renormalization
constants, respectively. The parameters α and β depend
on the quantity ωm [5] which plays an important role in
the η–η′ mixing and can be determined phenomenologi-
cally from the decays η → 2γ and η′ → 2γ. We obtain

L̃
(H,T )
1 =

1
3

(
α2 Zm

Zs

σ2
0

m2
s

− β2 Zm

Zh

σ2
0

m2
h

)

L̃
(H,T )
2 = 0

L̃
(H)
3 = β2 Zm

Zh

σ2
0

m2
h
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L̃4 =
1
3

(
α

Zm

Zs

σ2
0

m2
s

− β
Zm

Zh

σ2
0

m2
h

)

≡ 1
3
α

Zm

Zh

σ2
0

m2
h

(
α − β

α
+ γ

)
(6.2)

L̃5 = β
Zm

Zh

σ2
0

m2
h

L̃6 =
1
12

(
Zm

Zs

σ2
0

m2
s

− Zm

Zh

σ2
0

m2
h

)
≡ 1

12
Zm

Zh

σ2
0

m2
h

γ

L̃7 = − 1
12

Zm

Zp

σ2
0

m
(0)2
p

= − 1
18

σ0

ν

L̃8 =
1
4

Zm

Zh

σ2
0

m2
h

. (6.3)

From [5] we infer the values

α = 0.55 ± 0.04
β = 0.53 ± 0.02

σ0 = (53.9 ± 0.2) MeV
ν = (6410 ± 420) MeV(

Zh

Zm

)1/2

mh = (825 ± 10) MeV . (6.4)

The mass ms of the σ meson as well as the quotient Zs/Zm

remained undetermined in [5]. We have parameterized this
uncertainty in (6.2) with the scalar singlet–octet splitting

γ ≡ Zh

Zs

m2
h

m2
s

− 1 (6.5)

such that presumably |γ| < 1. (In fact, to leading order in
the large–Nc expansion one has exactly γ = 0.) This leads
to the results in Table 6 where we have omitted our nu-
merical results for L̃

(H,T )
1 , L̃

(H,T )
2 and L̃

(H)
3 since they are

incomplete without the contributions from higher deriva-
tive terms in the linear meson model. For comparison the
table also gives recent phenomenological estimates [14] of
chiral perturbation theory. The L̃i are here compared with
the couplings Li(µ) of the nonlinear sigma model normal-
ized at scales µ = 400 MeV (line (b)) and µ = 600 MeV
(line (c)). The overall agreement of the linear meson model
estimates with these values is striking. In particular, we
may use the low energy constants L5 and L8 for an esti-
mate of β in chiral perturbation theory:

βχPT =
1
4

L5

L8
= 0.5 ± 0.3 . (6.6)

This agrees well with the value given in (6.4) which was
extracted in [5] essentially from the ratio of decay rates
η → 2γ vs. η′ → 2γ. We emphasize that the difference of α
and β from one is entirely due to the non–minimal kinetic
terms in the linear meson model. A linear model that only
includes renormalizable interactions would be in very poor
agreement with phenomenology, as already noted in [15].
The difference between our values for L̃5 and L̃8 and the
central ones for L5(µ) and L8(µ) in line (b) of Table 6,

respectively, extracted from [14] could easily be absorbed
by a somewhat higher choice of the renormalization scale
µ of chiral perturbation theory as demonstrated in line
(c) of Table 6. On the other hand, relatively large higher
order quark mass effects were observed in the computation
of fK − fπ in the linear meson model [5] and these effects
are not included in chiral perturbation theory.

It should be noted that the errors of the L̃i given in
line (a) of Table 6 only reflect uncertainties in the deter-
mination of the parameters (6.4) within the linear meson
model. They do not represent a systematic error analysis
but rather follow from the scattering of values quoted for
a range of realistic assumptions in the tables of [5]. We be-
lieve, nevertheless, that these uncertainties are not too far
from realistic errors once the information on higher quark
mass corrections and propagator effects also contained in
the linear meson model is properly included. In fact, the
replacement ϕ00 → σ0 in our computation of the L̃i al-
ready includes resummed higher order contributions from
the singlet mass term (mu + md + ms)/3.

Our result for the scalar exchange contribution L̃
(H)
3 =

(1.29 ± 0.14) · 10−3 has opposite sign and is much smaller
than the value L3 = −(4.4 ± 2.5) · 10−3 given in [14]. We
take this as a strong indication that kinetic terms with
four derivatives in the linear meson model are dominant
as suggested by vector meson exchange dominance [12].
This is further substantiated by the fact that there is no
contribution to L̃2 due to scalar meson or η′ exchange in
contrast to the non–vanishing value L2 = (1.7±0.7) ·10−3

obtained from D–wave ππ scattering [14]. Nevertheless,
we wish to note that our results (6.2) for L̃

(H,T )
1 , L̃

(H,T )
2

and L̃
(H)
3 , i.e. for the scalar meson exchange contributions

to L1, L2 and L3, respectively, agree qualitatively with
those of [12].

7 Conclusions

Within the linear meson model we have estimated the ef-
fective couplings L̃4–L̃8 of the non–linear sigma model for
the light pseudoscalar mesons. They correspond to effec-
tive vertices related to interactions appearing in next to
leading order chiral perturbation theory. Whereas the low
energy couplings L4–L8 of chiral perturbation theory are
the renormalization scale (and scheme) dependent cou-
plings of a perturbative expansion, the effective couplings
L̃i already include all quantum fluctuations and corre-
spond to 1PI vertices. They are independent of the renor-
malization scale µ but involve typical momenta q of the
fields appearing in the n–point functions. We evaluate the
effective kinetic terms at the “pole” for an average pseu-
doscalar octet mass, i.e., q2

0 = −(2M2
K± +M2

π±)/3. A com-
parison with the low energy constants Li(µ) for µ2 = −q2

0
shows good agreement within errors (see Table 6). The
central values almost coincide for µ ' 600 MeV. A com-
putation of the 1PI vertices L̃i within chiral perturbation
theory would be very valuable for a more precise connec-
tion between the linear meson model and chiral perturba-
tion theory. In view of the comparatively small uncertain-
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Table 1. This table shows our estimates of some of the L̃i in line (a) in comparison with
the phenomenological results for Li(µ) taken at normalization scales µ = 400MeV (b) and
µ = 600MeV (c)

L̃4 · 103 L̃5 · 103 L̃6 · 103 L̃7 · 103 L̃8 · 103

(a) (0.78 ± 0.06)(γ + 0.04) 2.26 ± 0.10 (0.36 ± 0.01)γ −0.47 ± 0.03 1.07 ± 0.03
(b) 0.2 ± 0.5 3.0 ± 0.5 0.1 ± 0.3 −0.4 ± 0.15 1.3 ± 0.3
(c) −0.1 ± 0.5 2.0 ± 0.5 −0.1 ± 0.3 −0.4 ± 0.15 1.1 ± 0.3

ties for the L̃i this may lead to a more precise determina-
tion of some of the Li.

In our version of the linear meson model the explicit
chiral symmetry breaking due to current quark masses
appears only in form of a linear source term. In this ap-
proximation the effective couplings L̃4–L̃8 are entirely de-
termined by the exchange of scalar 0++ octet and singlet
states. The hypothesis that these couplings are dominated
by scalar exchange has been found earlier [12] to be in
agreement with observation. There large–Nc results were
employed to estimate L4, L6 and L7 whereas L5 and L8
were determined from phenomenological input. We pro-
vide here a quantitative framework for a computation of
these couplings based on phenomenological estimates of
the couplings in the linear meson model. At the present
stage the couplings L̃4 and L̃6 still depend on the unknown
scalar octet–singlet splitting γ, (6.5). It would be very in-
teresting to determine this parameter from phenomeno-
logical considerations within the linear meson model. Fur-
thermore there is the prospect that many of the parame-
ters of the linear meson model are actually determined by
a partial infrared fixed point behavior [7] of the running
couplings in the linear quark meson model. This would
lead to a theoretical “prediction” for some of the low en-
ergy constants L̃i independent of phenomenological input.
For the time being L̃5, L̃7 and L̃8 are determined effec-
tively in terms of masses and mixing in the η–η′ system
and the difference fK − fπ. The ratio L̃4/L̃6 ' 2 follows
without further input parameter.
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